
An Algorithm that Learns What’s in a Name

DANIEL M. BIKEL† dbikel@seas.upenn.edu
RICHARD SCHWARTZ schwartz@bbn.com
RALPH M. WEISCHEDEL* weisched@bbn.com
BBN Systems & Technologies, 70 Fawcett Street, Cambridge MA 02138
Telephone: (617) 873-3496

Running head: What’s in a Name
Keywords: named entity extraction, hidden Markov models

Abstract. In this paper, we present IdentiFinder™, a hidden Markov model that learns to recognize and
classify names, dates, times, and numerical quantities. We have evaluated the model in English (based on data
from the Sixth and Seventh Message Understanding Conferences [MUC-6, MUC-7] and broadcast news) and in
Spanish (based on data distributed through the First Multilingual Entity Task [MET-1]), and on speech input
(based on broadcast news). We report results here on standard materials only to quantify performance on data
available to the community, namely, MUC-6 and MET-1. Results have been consistently better than reported
by any other learning algorithm. IdentiFinder’s performance is competitive with approaches based on
handcrafted rules on mixed case text and superior on text where case information is not available. We also
present a controlled experiment showing the effect of training set size on performance, demonstrating that as
little as 100,000 words of training data is adequate to get performance around 90% on newswire. Although we
present our understanding of why this algorithm performs so well on this class of problems, we believe that
significant improvement in performance may still be possible.

1. The Named Entity Problem and Evaluation

1.1. The Named Entity Task

The named entity task is to identify all named locations, named persons, named
organizations, dates, times, monetary amounts, and percentages in text (see Figure 1.1).
Though this sounds clear, enough special cases arise to require lengthy guidelines, e.g., when
is The Wall Street Journal an artifact, and when is it an organization? When is White House
an organization, and when a location? Are branch offices of a bank an organization? Is a
street name a location? Should yesterday and last Tuesday be labeled dates? Is mid-morning
a time? In order to achieve human annotator consistency, guidelines with numerous special
cases have been defined for the Seventh Message Understanding Conference, MUC-7
(Chinchor, 1998).

† Daniel M. Bikel’s current address is Department of Computer & Information Science, University of
Pennsylvania, 200 South 33rd Street, Philadelphia, PA 19104.
* Please address correspondence to this author.

D. M. BIKEL, ET AL. 2 WHAT’S IN A NAME

The delegation, which included the commander of the U .N. troops in Bosnia, Lt. Gen. Sir
Michael Rose , went to the Serb stronghold of P ale, near S arajevo, for talks with Bosnian
Serb leader Radovan Karadzic .

Este ha sido el primer comentario publico del presidente Clinton respecto a la crisis de
O riente Medio desde que el secretario de Estado, Warren Christopher , decidiera regresar
precipitadamente a W ashington para impedir la ruptura del proceso de paz tras la violencia
desatada en el sur de L ibano.

1. L ocations
2. Persons
3. O rganizations

Figure 1.1 Examples. Examples of correct labels for English text and for Spanish text.

Both the boundaries of an expression and its label must be marked. The Standard
Generalized Markup Language, or SGML, is an abstract syntax for marking information and
structure in text, and is therefore appropriate for named entity mark-up. Various GUIs to
support manual preparation of answer keys are available.

1.2. Evaluation Metric

A computer program is used to evaluate the performance of a name-finder, called a “scoring
program”. The scoring program developed for the MUC and Multilingual Entity Task
(MET) evaluations measures both precision (P) and recall (R), terms borrowed from the
information-retrieval community, where

P
number of correct responses

number of responses
= and R

number of correct responses
number correct in key

= . (1.1)

(The term response is used to denote “answer delivered by a name-finder”; the term key or
key file is used to denote “an annotated file containing correct answers”.) Put informally,
recall measures the number of “hits” vs. the number of possible correct answers as specified
in the key, whereas precision measures how many answers were correct ones compared to
the number of answers delivered. These two measures of performance combine to form one
measure of performance, the F-measure, which is computed by the uniformly weighted
harmonic mean of precision and recall:

F
RP

R P
=

+1
2 ()

. (1.2)

In MUC and MET, a correct answer from a name-finder is one where the label and both
boundaries are correct. There are three types of labels, each of which use an attribute to
specify a particular entity. Label types and the entities they denote are defined as follows:

1. entity (ENAMEX): person, organization, location
2. time expression (TIMEX): date, time
3. numeric expression (NUMEX): money, percent.

A response is half correct if the label (both type and attribute) is correct but only one
boundary is correct. Alternatively, a response is half-correct if only the type of the label (and

D. M. BIKEL, ET AL. 3 WHAT’S IN A NAME

not the attribute) and both boundaries are correct. Automatic scoring software is available,
as detailed in Chinchor (1998).

2. Why

2.1. Why the Named Entity (NE) Problem

First and foremost, we chose to work on the named entity (NE) problem because it seemed
both to be solvable and to have applications. The NE problem has generated much interest,
as evidenced by its inclusion as an understanding task to be evaluated in both the Sixth and
Seventh Message Understanding Conferences (MUC-6 and MUC-7) and in the First and
Second Multilingual Entity Task evaluations (MET-1 and MET-2). Furthermore, at least one
commercial product has emerged: NameTag™ from IsoQuest. The NE task had been
defined by a set of annotator guidelines, an evaluation metric and example data (Sundheim &
Chinchor, 1995).

1. MATSUSHITA ELECTRIC INDUSTRIAL CO . HAS REACHED AGREEMENT …

2. IF ALL GOES WELL, MATSUSHITA AND ROBERT BOSCH WILL …

3. VICTOR CO. OF JAPAN (JVC) AND SONY CORP. …

4. IN A FACTORY OF BLAUPUNKT WERKE , A ROBERT BOSCH SUBSIDIARY , …

5. TOUCH PANEL SYSTEMS , CAPITALIZED AT 50 MILLION YEN, IS OWNED …

6. MATSUSHITA EILL DECIDE ON THE PRODUCTION SCALE. …

Figure 2.1 English Examples. Finding names ranges from the easy to the challenging. Company names are in
boldface. It is crucial for any name-finder to deal with the underlined text.

Second, though the problem is relatively easy in mixed case English prose, it is a
challenge in cases where case does not signal proper nouns, e.g., in Chinese, Japanese,
German or non-text modalities (e.g., speech). Since the task was generalized to other
languages in the Multilingual Entity Task (MET), the task definition is no longer dependent
on the use of mixed case in English. Figure 2.1 shows some difficulties involved in name
recognition in unicase English, using corporation names for illustration. All of the examples
are taken from on-line newswire text studied. The first example is the easiest; a key word
(CO.) strongly indicates the existence of a company name. However, the full, proper form
will not always be used; example 2 shows a short form, an alias. Many shortened forms are
algorithmically predictable. Example 3 illustrates a third easy case, the introduction of an
acronym. Examples 1–3 are all handled well in the state of the art. Examples 4–6 are far
more challenging, and call for improved performance. For instance, in examples 4 and 5
there is no clue in the names that they are company names; the underlined context in which
they occur is the critical clue to recognizing that a name is present. In example 6, the
problem is an error in the text itself; the challenge is recognizing that MATSUSHITA EILL is not
a company, but that MATSUSHITA is.

A third motivation for our working on the NE problem is that it is representative of a
general challenge for learning: given a set of concepts to be recognized and labeled, how can

D. M. BIKEL, ET AL. 4 WHAT’S IN A NAME

an algorithm learn to reliably spot and label new examples of the concepts? Although we
have primarily applied our approach to the NE problem, we have begun to tackle additional
term classification tasks. All classes are contiguous sequences of words where local context
usually contains enough information to identify the term as a class member.

2.2. Why a Learning Algorithm

Most current techniques for named entity recognition are based on handcrafting finite state
patterns to recognize names, dates, etc. (Appelt et al., 1995; Weischedel, 1995).
Unfortunately, straightforward rules, such as

<proper-noun> + <corporate designator> ==> <corporation>
are not nearly adequate for state-of-the-art performance, nor do they capture typical naming
conventions. For instance, humans would have no problem predicting not only that “BOSTON

POWER & LIGHT” is a corporation name but also that it is an electric utility, even though they
have never heard that name before. (There is no such company.) In fact, organizations tend
to choose names that identify the type of business/government purpose they have. The
chance to eliminate requiring your best people to pour over data to find rules to achieve state-
of-the-art performance is strong motivation to begin research in learning algorithms.

Our previous experience with handwritten rules is that each new source of text
requires significant tweaking of rules to maintain optimal performance. That is, tackling the
newspaper sources of the New York Times newswire after developing a rule set for the Wall
Street Journal requires significant hand tuning. Even if the technology is good enough to be
embedded in various applications, the maintenance costs for handcrafted rule systems could
be quite steep. Furthermore, moving to other modalities such as speech input, or merely to
upper case text, may require substantial modification of rule sets to obtain optimal
performance for each modality.

In our earlier experience with handcrafted rules, we found that rules for one language
may help very little in developing rule sets for another language. While the English rule set
was suggestive for developing a rule set for Spanish, virtually nothing carried over to a rule
set for Chinese.

3. A Hidden Markov Model
Name recognition may be viewed as a classification problem, where every word is either part
of some name (such as the seven types of named entities in the MUC evaluations described
earlier) or not part of any name. In recent years, hidden Markov models (HMM’s) have
enjoyed great success in other textual classification problems—most notably part-of-speech
tagging (Church, 1988; Weischedel et al., 1993). Given this success, and given the locality
of phenomena which indicate names in text, such as titles like “Mr.” preceding a person
name, we chose to develop a variant of an HMM for the name recognition task. (See
Rabiner (1989) for an excellent tutorial on HMM’s.)

By definition of the task, only a single label can be assigned to a word in context.
Therefore, our model will assign to every word either one of the desired classes or the label
NOT-A-NAME to represent “none of the desired classes”. We organize the states of this
HMM-variant into regions, one region for each desired class plus one for NOT-A-NAME. See
Figure 3.1. The HMM will have a model of each desired class and of the other text. The
implementation is not confined to the seven classes of NE; an arbitrary number of classes

D. M. BIKEL, ET AL. 5 WHAT’S IN A NAME

may be provided to the system at run-time. Additionally, there are two special states, the
START-OF-SENTENCE and END-OF-SENTENCE states.

PERSON

ORGANIZATION

NOT-A-NAME

(five other name-classes)

START-OF-SENTENCE END-OF-SENTENCE

Figure 3.1 Pictorial representation of conceptual model. The subgraph of name-classes is complete,
indicated here by the dashed arcs.

Within each of the regions, we use a model for computing the likelihood of words
occurring within that region (name-class), called a statistical bigram language model. A
statistical bigram language model computes the likelihood of a sequence of words by
employing a Markov chain, where every word’s likelihood is based simply on the previous
word. More formally, every word is represented by a state in the bigram model, and there is
a probability associated with every transition from the current word to the next word. To
determine the likelihood of a sequence of words w1 through wn, the model computes

p w wi i
i

n

(|)−
=

∏ 1
1

 (a special +begin+ word is used to compute the likelihood of w1). The use of

a statistical bigram model in each name-class means that the number of states in each of the
name-class regions is equal to the vocabulary size, V .

For the purposes of name-finding, we must find the most likely sequence of name-
classes (NC) given a sequence of words (W):

max Pr(NC | W) (3.1)

We assume a generative model, i.e., that the HMM generates the sequence of words and
labels. We use Bayes’ Rule:

Pr()
Pr()

Pr()
NC W

W, NC
W

= (3.2)

Since the unconditioned probability of the word sequence—the denominator—is constant for
any given sentence, we can maximize the right hand side of Equation 3.2 by maximizing the
numerator alone. We will describe how Pr(W, NC) is modeled in §3.2.1.

D. M. BIKEL, ET AL. 6 WHAT’S IN A NAME

The numerator of Equation 3.2 is the joint probability of the word and name-class
sequence. As is necessary with a Markov model, we make independence assumptions when
computing this joint probability. Accordingly, the generation of words and name-classes
proceeds in three steps:
1. Select a name-class NC, conditioning on the previous name-class and the previous word.
2. Generate the first word inside that name-class, conditioning on the current and previous

name-classes.
3. Generate all subsequent words inside the current name-class, where each subsequent

word is conditioned on its immediate predecessor (as per a standard bigram language
model).

These three steps are repeated until the entire observed word sequence is generated.
Using the Viterbi algorithm (Viterbi, 1967), we efficiently search the entire space of all
possible name-class assignments, maximizing the numerator of Equation 3.2, Pr(W, NC).

Let us illustrate the high-level computation of the likelihood of a word–name-class
sequence with an example. Suppose IdentiFinder encounters the sentence

Mr. Jones eats.
According to rules of MUC and MET, the correct annotation for such a sentence is

Mr. <ENAMEX TYPE=PERSON>Jones</ENAMEX> eats.
That is, the token Jones is in the PERSON name-class, while the other tokens are in the NOT-
A-NAME name-class. The model would assign the following likelihood to this word–name-
class sequence (which we would hope to be the most likely, given sufficient training):

Pr(NOT-A-NAME | START-OF-SENTENCE, “+end+”) *
Pr(“Mr.” | NOT-A-NAME, START-OF-SENTENCE) *
Pr(+end+ | “Mr.”, NOT-A-NAME) *
Pr(PERSON | NOT-A-NAME, “Mr.”) *
Pr(“Jones” | PERSON, NOT-A-NAME) *
Pr(+end+ | “Jones”, PERSON) *
Pr(NOT-A-NAME | PERSON, “Jones”) *
Pr(“eats” | NOT-A-NAME, PERSON) *
Pr(“.” | “eats”, NOT-A-NAME) *
Pr(+end+ | “.”, NOT-A-NAME) *
Pr(END-OF-SENTENCE | NOT-A-NAME, “.”)

The details of these probability estimates as well as the use of the special +end+ word are
described below, in §3.2.

Informally, the construction of the model in this manner indicates that we view each
type of “name” to be its own language, with separate bigram probabilities for generating its
words. This reflects our intuition of the following.

• There is generally predictive internal evidence regarding the class of a desired
entity. Consider the nature of stereotypical names for airlines, utilities, other
corporations and government organizations. In many cultures, first person names
are stereotypical; in Chinese, family names are stereotypical. In Chinese and
Japanese, special characters are used to transliterate foreign names.

• Local external evidence often suggests the boundaries and class of one of the
desired expressions. Titles signal beginnings of person names. Closed class
words, such as determiners, pronouns, and prepositions often signal a boundary.

D. M. BIKEL, ET AL. 7 WHAT’S IN A NAME

While the number of word-states within each name-class is equal to V , this
“interior” bigram language model is ergodic, i.e., there is a probability associated with every
one of the V 2 transitions. As a parameterized, trained model, if such a transition were never
observed, the model “backs off” to a less powerful model, as described below, in §3.2.3.

3.1. Words and Word-Features

The word feature is the one part of this model that is language-dependent. Fortunately, the
word feature computation is an extremely small part of the implementation, at roughly
twenty lines of code. The rationale for having such features is clear:

• in Roman languages, capitalization gives good evidence of names.1

• numeric symbols can automatically be grouped into categories, as in the initial
features in Table 3.1.

• semantic classes can be defined by lists of words having a semantic feature.
• special character sets such as the ones used for transliterating names in Chinese or

in Japanese can be identified.
Throughout most of the model, we consider words to be ordered pairs (or two-

element vectors), composed of word and word-feature, denoted w f, . The word feature is a
simple, deterministic computation performed on each word as it is added to or looked up in
the vocabulary. It produces one of the fourteen values in Table 3.1.

Table 3.1 Word features, examples and intuition behind them.2

Word Feature Example Text Intuition
twoDigitNum 90 Two-digit year
fourDigitNum 1990 Four digit year
containsDigitAndAlpha A8956-67 Product code
containsDigitAndDash 09-96 Date
containsDigitAndSlash 11/9/89 Date
containsDigitAndComma 23,000.00 Monetary amount
containsDigitAndPeriod 1.00 Monetary amount, percentage
otherNum 456789 Other number
allCaps BBN Organization
capPeriod M. Person name initial
firstWord first word of

sentence
No useful capitalization

information
initCap Sally Capitalized word
lowerCase can Uncapitalized word
other , Punctuation marks, all other words

These values are computed in the order listed, so that in the case of non-disjoint
feature-classes, such as containsDigitAndAlpha and containsDigitAndDash ,
the former will take precedence. The first eight features arise from the need to distinguish
and annotate monetary amounts, percentages, times and dates. The rest of the features
distinguish types of capitalization and all other words (such as punctuation marks, which are
separate tokens). In particular, the firstWord feature arises from the fact that if a word is
capitalized and is the first word of the sentence, we have no good information as to why it is

D. M. BIKEL, ET AL. 8 WHAT’S IN A NAME

capitalized (but note that allCaps and capPeriod are computed before firstWord ,
and therefore take precedence).

In the early stages of IdentiFinder’s development, the word-feature was not in the
model; instead the system relied on a third-level back-off part-of-speech tag, which in turn
was computed by our stochastic part-of-speech tagger. The tags were taken at face value:
there were no k-best tags; the system treated the part-of-speech tagger as a “black box”.
Although the part-of-speech tagger used capitalization to help it determine proper-noun tags,
this feature was only implicit in the model, and then only after two levels of back-off. Also,
the capitalization of a word was submerged in the muddiness of part-of-speech tags, which
can “smear” the capitalization probability mass over several tags. Because it seemed that
capitalization would be a good name-predicting feature, and that it should appear earlier in
the model, we eliminated the reliance on part-of-speech altogether, and opted for the more
direct, word-feature model described above, in §3. Also in the early stages of development,
we had a very small number of features, indicating whether the word was a number, the first
word of a sentence, all uppercase, initial-capitalized or lower-case. We then expanded the
feature set to its current state in order to capture more subtleties related mostly to numbers;
due to increased performance (although not entirely dramatic) on every test, we kept the
enlarged feature set.

3.2. Formal Model

This section describes the model formally, discussing the transition probabilities to the word-
states, which “generate” the words of each name-class. As with most trained, probabilistic
models, we have a most accurate, most powerful model, which will “back off” to a less-
powerful model when there is insufficient training, and ultimately back-off to unigram
probabilities.

3.2.1. Top Level Model

The top-level model consists of three components: (1) a model to generate a name-class, (2)
a model to generate the first word in a name-class and (3) a model to generate all subsequent
words in a name-class.

In order to generate the first word, we must make a transition from one name-class to
another, as well as calculate the likelihood of that word. Our intuition was that a word
preceding the start of a name-class (such as “Mr.”, “President” or other titles preceding the
PERSON name-class) and the word following a name-class would be strong indicators of the
subsequent and preceding name-classes, respectively. Accordingly, the probability for
generating the first word of a name-class is factored into two parts:

Pr , Pr , ,NC NC w w f NC NC
first− − −() ⋅ ()1 1 1

. (3.3)

The top level model for generating all but the first word in a name-class is

Pr , , ,w f w f NC−()1
. (3.4)

There is also a distinguished “+end+” word, so that the probability may be computed
for any current word to be the final word of its name-class, i.e.,

Pr , , ,+ +()end w f NC
final

other . (3.5)

D. M. BIKEL, ET AL. 9 WHAT’S IN A NAME

As one might imagine, it would be useless to have the first factor in Equation 3.3 be
conditioned on the +end+ word, so the probability is conditioned on the previous real word
of the previous name-class, i.e., we compute

Pr ,NC NC w

w end

NC

w
− −

−

−

−

()
= + +

=
=

1 1

1

1

1

if

S - -

last observed word otherwise

TART OF SENTENCE
(3.6)

Note that the above probability is not conditioned on the word-feature of w−1. Our
intuition is that in cases where the previous word would help the model predict the next
name-class, the word feature—capitalization in particular—is not important: “Mr.” is a good
indicator of the next word beginning the PERSON name-class, regardless of capitalization,
especially since it is almost never seen as “mr.”.

3.2.2. Training: Estimating Probabilities

The calculation of the above probabilities is straightforward, using events/sample-size:

Pr ,
(, ,)

(,)
NC NC w

c NC NC w

c NC w− −
− −

− −
() =1 1

1 1

1 1

(3.7)

Pr , ,
, , ,

(,)
w f NC NC

c w f NC NC

c NC NCfirst

first

−
−

−
() =

()
1

1

1

(3.8)

Pr , , ,
, , , ,

, ,
w f w f NC

c w f w f NC

c w f NC−
−

−

() =
()

()1
1

1

(3.9)

where c() represents the number of times the events occurred in the training data (the count).

3.2.3. Back-off Models and Smoothing

Ideally, we would have sufficient training (or at least one observation of) every event whose
conditional probability we wish to calculate. Also, ideally, we would have sufficient samples
to estimate the conditional probabilities, e.g., for Pr ,NC NC w− −()1 1

, we would like to have seen

sufficient numbers of NC–1, w–1. Unfortunately, there is rarely enough training data to
estimate accurate probabilities for all possibilities. There are two cases: words not seen in
training (“unknown words”) and other events where insufficient training data is available.

Unknown Words. The vocabulary of the system is built as it trains. Necessarily, then, the
system knows about all words for which it stores bigram counts in order to compute the
probabilities in Equations 3.3 – 3.5. All unknown words are mapped to the token _UNK_.
The question arises how the system should estimate probabilities involving _UNK_, since
there are three ways in which they can appear in a bigram: as the current word, as the
previous word or as both. A good answer is to train a separate, unknown word–model on
held-out data, to gather statistics of unknown words occurring in the midst of known words.
That is to say, since we treat all unknown words as one token _UNK_, we would like to
estimate how _UNK_ occurs in some of our training data.

Ideally, one would hold out one article at a time for smoothing or unknown word-
training. However, to simplify the implementation, we hold out 50% of our data to train the
unknown word model (the vocabulary is built up on the first 50%), save these counts in a

D. M. BIKEL, ET AL. 10 WHAT’S IN A NAME

training data file, then hold out the other 50% and concatenate these bigram counts with the
first unknown word training file. This way, we can gather likelihoods of an unknown word
appearing in a bigram using all available training data. This approach is perfectly valid, as
we are trying to estimate that which we have not legitimately seen in training. When
performing name recognition, if either word of the bigram is unknown, the model used to
estimate the probabilities of Equations 3.3–5 is the unknown word model, otherwise it is the
model from the normal training. The unknown word–model can be viewed as a first level of
back-off, therefore, since it is used when an unknown word is encountered, and is necessarily
not as accurate as the bigram model formed from the actual training.

Further Back-off Models and Smoothing. Whether a bigram contains an unknown word or
not, it is possible that either model may not have seen this bigram. Table 3.2 shows a graphic
illustration of the back-off scheme.

Table 3.2 Back-off strategy.

Name-class Bigrams First-word Bigrams Non–first-word Bigrams
Pr(,)

Pr()

Pr()

NC NC w

NC NC

NC

− −

−

1 1

1

1

M

M

M

number of name - classes

Pr , ,

Pr , , ,

Pr ,

Pr(|) Pr(|)

w f NC NC

w f begin NC

w f NC

w NC f NC

V

first −()

+ +()

()

⋅

⋅

1

1 1

M

M

M

M

other

number of word features

Pr , , ,

Pr ,

Pr(|) Pr(|)

w f w f NC

w f NC

w NC f NC

V

−()

()

⋅

⋅

1

1 1

M

M

M

number of word features

The weight for each back-off model is computed on-the-fly, using the following
formula: if computing Pr X Y() for some events X and Y, assign weight of λ to the direct

estimate of this conditional probability computation (using one of the formulae of §3.2.2)
and a weight of (1 – λ) to the back-off model, where

λ = −

 +

1
1

1

old
unique outcomes of

c Y

c Y Y

c Y

()
()

()

, (3.10)

where “old c(Y)” is the sample size of the model from which we are backing off. This is a
rather simple method of smoothing, which tends to work well when there are only three or
four levels of back-off.3 This method also overcomes the problem when a back-off model
has roughly the same amount of training as the current model, via the first factor of Equation
3.10, which essentially ignores the back-off model and puts all the weight on the primary
model, in such an equi-trained situation. For example, suppose we are trying to compute the
back-off weight λ for a computation of Pr(PERSON | NOT-A-NAME, “Mr.”), but it turns out
that c(NOT-A-NAME, “Mr.”) ≈ c(NOT-A-NAME). In such a case, we would like to effectively
remove the estimate of Pr(PERSON | NOT-A-NAME) from the smoothing of our estimate of

D. M. BIKEL, ET AL. 11 WHAT’S IN A NAME

Pr(PERSON | NOT-A-NAME, “Mr.”), since the two have equal training, but the latter is a
superior model, since it conditions on more context. This is exactly what happens with the
first factor in Equation 3.10, since, when we are computing Pr(PERSON | NOT-A-NAME), old
c(Y) ≈ c(Y), making λ almost zero and pushing all the rest of the probability mass to the
computation of Pr(PERSON).

The second factor of Equation 3.10, which does the real work of smoothing, is based
on the notion that the number of unique outcomes over the sample size is a crude measure of
the certainty of the model. This “certainty” is essentially a measure (in the (0,1) interval) of
the uniformity of the distribution from state Y, where a completely uniform distribution has
the most uncertainty.

As an example—disregarding the first factor—if we saw the bigram “come hither”
once in training and we saw “come here” three times, and nowhere else did we see the word
“come” in the NOT-A-NAME class, when computing

Pr(“hither” | “come”, NOT-A-NAME),
we would back off to the unigram probability

Pr(“hither” | NOT-A-NAME)
with a weight of 13 , since the number of unique outcomes for the word-state for “come”
would be two, and the total number of times “come” had been the preceding word in a
bigram would be four (a weight of 1 1 2

4
2
3/()+ = for the bigram probability, a weight of

1 2
3

1
3− = for the back-off model).

3.3. Comparison with a traditional HMM

Unlike a traditional HMM, the probability of generating a particular word is 1 for each word-
state inside each of the name-class states. An alternative—and more traditional—model
would have a small number of states within each name-class, each having, perhaps, some
semantic significance, e.g., three states in the PERSON name-class, representing a first, middle
and last name, where each of these three states would have some probability associated with
emitting any word from the vocabulary. We chose to use a bigram language model because,
while less semantically appealing, such n-gram language models work remarkably well in
practice. Also, as a first research attempt, an n-gram model captures the most general
significance of the words in each name-class, without presupposing any specifics of the
structure of names, á la the PERSON name-class example, above. More important, either
approach is mathematically valid, as long as all transitions out of a given state sum to one.

3.4. Decoding: The Recognition Process

The number of possible state sequences for N states in an ergodic model for a sentence of m
words is Nm. However, using dynamic programming and an appropriate merging of multiple
theories when they converge on a particular state—the Viterbi decoding algorithm—a
sentence can be “decoded” in time linear to the number of tokens in the sentence, O(m).
Since we are interested in recovering the name-class state sequence, we pursue N theories,
one for each name-class, at every given step of the algorithm (for MUC-6, e.g., N = 8).

D. M. BIKEL, ET AL. 12 WHAT’S IN A NAME

4. Implementation
IdentiFinder is implemented in C++. On a desktop PC running linux with a 200MHz

processor and 128MB RAM, IdentiFinder trains on the 650k word training corpus of Wall
Street Journal text in six minutes. Named entity recognition runs at about 12MB/hour.

Up until now, our effort has been focused on recognition quality (F-measure). We
believe that substantial speed up is possible, and have begun implementation to achieve that.

5. Results of evaluation
In this section we report the results of evaluating the current version of the learning software.
We report the results for English and for Spanish mixed case, and for English in varying
modalities. In addition, we present the results of experiments that determine the impact of
the training set size on the algorithm’s performance in both English and Spanish. For each
language, we have a held-out development test set and a held-out, blind test set. We only
report results on the blind test set for each respective language.

5.1. English and Spanish Results

Our test set for English data is that from MUC-6, a collection of 30 Wall Street Journal
documents (we used a different test set during development).4 Our Spanish test set is from
materials used in MET-1, comprised of articles from the news agency AFP.5

Table 5.1 F-measure Scores. This table illustrates IdentiFinder’s performance as compared to the best
reported scores for each category.

Language Best Rules IdentiFinder
Mixed Case English (WSJ) 96.4 94.9
Upper Case English (WSJ) 89 93.6
Speech Form English (WSJ) 74 90.7
Mixed Case Spanish 93 90

Table 5.1 compares the F-measure for IdentiFinder against the highest performing system of
handcrafted rules.6 We can make the following two observations.
1. Performance of the best hand-crafted system on mixed case is better than that of the

HMM. However, the performance is close enough that we choose the learning approach
rather than requiring computational linguists to maintain rule sets. Indeed, significance
tests (see Chinchor, 1995) indicate that IdentiFinder performs comparably to the best
hand-crafted system on mixed-case text.

2. Spanish performance trails that of English. There are several contributing factors to this
performance discrepancy:
• Three times more training data were available for English. Spanish performance

should improve with more training data.
• The training data for Spanish seems to have more internal inconsistencies. Another

pass through the data to minimize inconsistencies should improve performance.
• Many words in the Spanish names are lower case, thereby making name-finding in

Spanish somewhat harder than in English. For example, departamento
(“Department”) could often start an organization name, and nationality adjectives,

D. M. BIKEL, ET AL. 13 WHAT’S IN A NAME

such as coreana (“Korean”) could appear in names and by convention are not
capitalized.

• The domain of the Spanish data, press conferences, is probably somewhat harder than
the narrower domain of English, namely the change of corporate officers in major
corporations.

5.2. Detailed Performance Results on English

While the F-measure is convenient as a simple, single metric of name-finding
performance, it is illuminating and indeed necessary when evaluating a name-finder to look
at the precision and recall from which the F-measure is derived, as well as the precision and
recall for specific named entities. The overall recall for IdentiFinder on the MUC-6 test is
96%, the overall precision, 93%, which combine to form an F-measure of 94.92.

0

10

20

30

40

50

60

70

80

90

100

ORG PERSON LOC DATE MONEY PERCENT

0

50

100

150

200

250

300

350

400

450

500

Recall
Precision
Count

Figure 5.1 Detailed Performance Analysis of IdentiFinder on the MUC-6 Test. The left axis is percentage
of recall/precision for the bars; the right axis is the raw entity count for the line graph. There are no occurrences

of the TIME name-class in the MUC-6 test.

Figure 5.1 illustrates the performance of IdentiFinder on the various named entities that
appeared in the MUC-6 test, giving separate recall and precision scores for each type of
entity. It is important to note that not all entity types appear with the same frequency, and
therefore performance on the far more numerous entity types has a much greater impact on
overall performance than on the infrequent ones. The combined line chart serves to illustrate
the relative frequency of the entities, using the absolute scale on the right-hand side of the
chart; e.g., there were 457 organization (ORG) names in the MUC-6 test, but only 76 money

R
ec

al
l/P

re
ci

si
on

E
nt

ity
 C

ou
nt

 in
 M

U
C

-6
 T

es
t

D. M. BIKEL, ET AL. 14 WHAT’S IN A NAME

amounts. All data for Figure 5.1 were generated by the MUC-7 scoring program running in
MUC-6 compatibility mode.

5.3. Effect of word features.

As the word-feature computation is the only part of the model that is language-dependent, it
is instructive to evaluate the performance of IdentiFinder with only the smallest subset of
word-features vs. the entire set. Early in the system’s development there were only five
word features, to detect whether a word was a number, all upper-case, all lower-case, the first
word of a sentence or none of the above. Using only these five features, IdentiFinder scored
an F of 94.07 (96% recall, 92% precision) on the MUC-6 test, as compared to the 94.92 F-
measure score with the full feature set. This lets us know that while the full word feature
computation yields better performance, it is not nearly as significant as the other parts of the
model.

5.4. Modalities other than Mixed Case Prose

For English, if mixed case is not available, the NE task becomes significantly harder, even
for humans. In Figure 5.2, we show the same sentence in mixed case, in upper case, and in
the format generated by automatic speech recognition, termed “SNOR” format. SNOR
format not only lacks case, but lacks all punctuation, and has all numbers spelled out as
words.

Figure 5.3 illustrates how one mixed case training set can serve to train IdentiFinder
for uppercase input, for speech (SNOR) format, and for OCR input. It is easy to see that one
can automatically convert the mixed case training set into upper case training, and then
retrain IdentiFinder on the uppercase material. However, it is also easy to convert mixed
case prose into SNOR format by upcasing the text, removing all punctuation, and converting
all numbers to their word form, e.g., 150 becomes one hundred fifty. For OCR, print the
training files, then OCR it, and retrain.

Mixed Case: The British company, whose interests include the Cunard cruise lines
and the Ritz hotel of London, said Simon Keswick, the head of Hong Kong Land
Holdings Ltd. will take over as chairman May 26. The current acting chairman, Alan,
will become a deputy chairman of the group.

Upper Case: THE BRITISH COMPANY, WHOSE INTERESTS INCLUDE THE
CUNARD CRUISE LINES AND THE RITZ HOTEL OF LONDON, SAID SIMON
KESWICK, THE HEAD OF HONGKONG LAND HOLDINGS LTD. WILL TAKE
OVER AS CHAIRMAN MAY 26. THE CURRENT ACTING CHAIRMAN, ALAN
CLEMENTS, WILL BECOME A DEPUTY CHAIRMAN OF THE GROUP.

SNOR: THE BRITISH COMPANY WHOSE INTERESTS INCLUDE THE
CUNARD CRUISE LINES AND THE RITZ HOTEL OF LONDON SAID SIMON
KESWICK THE HEAD OF HONGKONG LAND HOLDINGS LIMITED WILL TAKE
OVER AS CHAIRMAN MAY TWENTY SIX THE CURRENT ACTING CHAIRMAN
ALAN CLEMENTS WILL BECOME A DEPUTY CHAIRMAN OF THE GROUP

Figure 5.2 Three Modalities. The task becomes increasingly difficult as one moves from mixed case to upper
case, to SNOR format.

D. M. BIKEL, ET AL. 15 WHAT’S IN A NAME

Annotation Training Testing

Mixed case text Text Text

Upcase Uppercase

Snorify Speech

Print and OCR OCR

Figure 5.3 Deriving Alternative Modalities. Given mixed case training data, one can automatically derive
training data for upper case text, for speech (SNOR) format and for optical character recognition (OCR).

We have conducted experiments on upper case text and SNOR format, and have
planned to run experiments with OCR data in 1999. Results for the MUC-6 test materials are
reported in Table 5.1. Two points should be noted about the results with respect to
alternative modalities. First, the best score previously reported for an upper case version of
MUC-6 was by the handcrafted rule system NameTag™, the same system that scored best on
the mixed case version (Krupka, 1995). It had been designed to perform well on mixed case
and on upper case. The only performance by a rule-based system ever reported on SNOR
format was by our own rule-based system. It should be noted that we had not prepared it
specifically for SNOR, but had tuned it to handle upper case text. We estimate that a
month’s effort would have improved its scores by about 10 points of F. Given the
performance of IdentiFinder without any labor for SNOR input, we had no motivation to
spend a person month to get an exact score for the rule-based system. Nevertheless, the
following two conclusions were very apparent.
1. IdentiFinder clearly outperformed all previous approaches when mixed case was not

available.
2. IdentiFinder required no labor to handle upper case text or speech format. It required

only a few machine cycles to convert the mixed case training data to other forms and
retrain.

5.5. The Amount of Training Data Required

With any learning technique one of the important questions is how much training data is
required to get acceptable performance. More generally, how does performance vary as the
training set size is increased or decreased? We ran a sequence of experiments in English and
in Spanish to try to answer this question for the model that was implemented.

For English, there were 650,000 words of training data. By that we mean that the text
of the document itself (including headlines but not including SGML tags) was 650,000 words
long. Given this maximum size of training available to us, we successively divided the
training material in half until we were using only 60,000 words for the smallest experiment.

The results are shown in Figure 5.4 below using a logarithmic scale for the x-axis.
The positive outcome of the experiment is that half as much training data would have given
almost equivalent performance. Had we used only one sixth of the data or approximately
100,000 words, performance would have degraded slightly, only about 1–2 percent.
Reducing the training set to 60,000 words would have had a more significant decrease in the
performance of the system; however, the performance is still very high even with such a
small training set.

D. M. BIKEL, ET AL. 16 WHAT’S IN A NAME

75

80

85

90

95

100

10000 100000 1000000
Training Data Size (word count)

English
Spanish

Figure 5.4 Impact of Various Training Set Sizes on Performance. The learning algorithm performs
remarkable well in both English and Spanish, nearly comparable to handcrafted systems with as little as

100,000 words of training data.

With increased training data it would be possible to use even more detailed models
that require more data and could achieve significantly improved overall system performance
with those more detailed models.

For Spanish we had only 223,000 words of training data. We also measured the
performance of the system with half the training data or slightly more than 100,000 words of
text. Figure 5.4 shows the results. There is almost no change in performance by using as
little as 100,000 words of training data.

Therefore, the results in both languages were comparable. As little as 100,000 words
of training data produces performance nearly comparable to handcrafted systems.

The cost of using any algorithm is always an issue. To give a sense of the size of
650,000 words, that is roughly two-thirds the length of one edition of the Wall Street Journal.
Annotators—those who mark answer keys—can reliably mark WSJ-style text with the seven
MUC categories at a rate of 3000 words per hour for inexperienced annotators, and roughly
5000 words per hour for experienced annotators, according to experiments performed at
BBN. Using IdentiFinder itself, BBN has also explored several automatic means of
correction/adjudication, and several bootstrapping methods that make the task of creating a
sufficient amount of training data quite manageable. One of these methods is to have
IdentiFinder test on its own training, catching an important albeit limited class of errors due
to inconsistency (either intra- or inter-annotator). In our experience, inter-annotator
consistency is roughly 95% or above for our typical text sources.

F
-m

ea
su

re

D. M. BIKEL, ET AL. 17 WHAT’S IN A NAME

6. Further Work and Error Analysis

6.1. Further Work

While our initial results have been quite favorable, there is still much that can be done
potentially to improve performance and completely close the gap between learned and rule-
based name-finding systems. We would like to incorporate the following into the current
model:

• a hierarchical model to capture nested names, e.g., Bank of Boston
• longer-distance information, to find names not captured by our bigram model
• training heuristics to supplement annotated data with large volumes of unmarked

language.

6.2. Error Analysis

The second bullet in §6.1 is of particular interest, especially in the analysis of certain errors
currently made by IdentiFinder. Let us look at the following sentence, part of the MUC-7
dryrun data.

The Turkish company, <ENAMEX TYPE="LOCATION">Birgen
Air</ENAMEX>, was using the plane to fill a charter commitment
to a German company, ...

Figure 6.1 IdentiFinder output on a sentence from the MUC-7 dryrun data.

The angle-bracketed items are SGML tags, which delimit and identify the type of
names in the text. Note that Birgen Air has been labeled a LOCATION, when it is an
ORGANIZATION (and is so marked in the key file). According to the tokenization rules of
MUC-6, MET-1 and MUC-7, punctuation marks such as commas are treated as separate
tokens, meaning that the “word” directly preceding Birgen —as far as IdentiFinder’s model
is concerned—is “, ”, and the same “word” directly follows “Air ”. This means that
currently, IdentiFinder is incapable of using the slightly wider context of a trigram that
would include the word “company ” when predicting the beginning of this ORGANIZATION.
As it happens, Birgen is an unknown word, and the capitalized word Air happens to have
a very high unigram probability for appearing within a LOCATION, due to many training
examples of “Edwards Air Force Base ” and the like, which are considered
LOCATIONs, not ORGANIZATIONs. (For the same reason, “_UNK_ Air ” is a very likely
bigram in a LOCATION in the unknown word model.) Therefore, with the current bigram
model, IdentiFinder has determined that “Birgen Air ” is a LOCATION, when it is actually
an ORGANIZATION, an error that could be potentially prevented by using more context in the
model. The downside of using more context, such as trigrams, is that in practice
exponentially more training data is required.

As another approach, one might consider effectively “stripping” seemingly
inconsequential tokens such as commas out of the data stream processed by IdentiFinder, re-
inserting them after name-finding is complete. While such a technique might appear to be
helpful, it is actually quite detrimental, as punctuation tokens—commas in particular—give
great evidence of names, especially given the prevalence of LOCATIONs having the form
“City, State ”. For example, in the text fragment “Los Angeles, California ”,

D. M. BIKEL, ET AL. 18 WHAT’S IN A NAME

the comma helps signal the end of the first LOCATION “Los Angeles ” and the beginning
of the next LOCATION “California ”. The compromise between a full trigram model and
the status quo is to develop a special-case extension to the model. Indeed, very recently
IdentiFinder’s model has been augmented with this special case, so that both the punctuation
token and its adjacent token can be used to determine the likelihood of a name.

7. Other Learning Approaches to Name-finding

There have been relatively few attempts to apply learning algorithms to the task of named
entity recognition. However, Brill’s transformation-based learning algorithm (Brill, 1995)
has been applied to the NE problem, as outlined in Aberdeen et al. (1995). Performance thus
far reported lags that of IdentiFinder by about 10 F-measure points. Bennett et al. (1997) use
binary decision trees for the NE task. The decision tree decides whether to insert a begin
category mark, end category mark, or nothing at each point in the sequence of input words.
Their F-measure scores thus far are about 91, contrasted with IdentiFinder’s 94.9 on the same
test material.

Like IdentiFinder, these two alternative learning approaches use statistics to make
decisions. However, only IdentiFinder has a complete probabilistic model that

• governs all decisions and
• models the categories of interest and the residual input that is not of interest.
A very recent approach is the MENE system (Borthwick et al., 1998), which employs

similar features to those of IdentiFinder to create a Maximum Entropy model for name-
finding. Using MENE alone, the reported F-measure results on the MUC-7 dry-run and
formal test sets range from the mid-80’s to the low 90’s. However, Borthwick et al. have
very successfully combined MENE with other, rule-based name-finders to achieve results
superior to the rule-based systems alone.

8. Conclusions
None of the formalisms or techniques presented in this paper is new; rather, applying an
HMM to this task and the model itself are novel. We have shown that using a fairly simple
probabilistic model, finding names and other numerical entities as specified by the MUC NE
and MET tasks can be performed with “near-human performance”, often likened to an F-
measure of 95 or above. We have also shown that such a system can be trained efficiently.
Furthermore, the system is largely language-independent: for example, although none of the
authors speaks Spanish, we were able to develop a Spanish name-finder by training
IdentiFinder on answer keys marked by native speakers. We also showed that the technique
handles multiple modalities automatically when automatic methods exist to convert the
training data for one modality into another. To our knowledge, our learned name-finding
system has achieved a higher F-measure than any other learned NE system. Indeed,
IdentiFinder performs as well as the top-performing systems, whether learned or handcrafted,
on mixed case text and is superior to all previously reported results when case information is
lacking.

9. Acknowledgments
The work reported here was supported in part by the Defense Advanced Research Projects
Agency and the DoD Counterdrug Technology Development Program Office. Technical

D. M. BIKEL, ET AL. 19 WHAT’S IN A NAME

agents for part of this work were Fort Huachucha under contract number DABT63-94-C-
0062 and Rome Laboratory under contract number F30602-95-C-0111. The views and
conclusions contained in this document are those of the authors and should not be interpreted
as necessarily representing the official policies, either expressed or implied, of the Defense
Advanced Research Projects Agency, the DoD Counterdrug Technology Development
Program Office, or the United States Government.

10. Notes

1 Spanish has many lower-case words in organization names.
2 This table represents the feature set used at the time of MET-1. We have subsequently made additions, such as
list membership features, that have helped marginally in certain domains. We have also allowed for multiple,
non-disjoint feature vectors, which again provide only marginal improvement in overall performance.

3 Any more levels of back-off might require a more sophisticated smoothing technique, such as deleted
interpolation. No matter what smoothing technique is used, one must remember that smoothing is the art of
estimating the probability of that which is unknown (i.e., not seen in training).

4 Unfortunately, the MUC-6 test is not a good measure of domain-independent performance, since the MUC-6
materials were obtained by a keyword search intended to retrieve articles reporting a change in corporate
officers.

5 The MET-1 data was selected by the Government retrieving articles about press conferences from AFP.
6 For Mixed Case and Upper Case, the “Best Rules” column results are those of NameTag™ reported at
MUC-6. The “Best Rules” result in the “Speech Form” test is from an earlier, rule-based name-finder
developed at BBN (the rules were tuned for regular WSJ, not speech output). Finally, the “Best Rules” result
in the Mixed Case Spanish was reported anonymously in (Merchant et al., 1996).

11. References

Aberdeen, J., Burger, J., Day, D., Hirschman, L., Robinson, P., & Vilain, M. (1995). MITRE:
Description of the Alembic System Used for MUC-6. Proceedings of the Sixth
Message Understanding Conference (MUC-6) (pp. 141–155). Columbia, Maryland:
Morgan Kaufmann Publishers, Inc.

Appelt, D. E., Jerry R. Hobbs, Bear, J., Israel, D., Kameyama, M., Kehler, A., Martin, D.,
Myers, K., & Tyson, M. (1995). SRI International FASTUS System MUC-6 Test
Results and Analysis. Proceedings of the Sixth Message Understanding Conference
(MUC-6) (pp. 237–248). Columbia, Maryland: Morgan Kaufmann Publishers, Inc.

Bennett, S. W., Aone, C., & Lovell, C. (1997). Learning to Tag Multilingual Texts Through
Observation. Proceedings of the Second Conference on Empirical Methods in
Natural Language Processing (pp. 109-116). Providence, Rhode Island: Morgan
Kauffman Publishers, Inc.

Borthwick, A., Sterling, J., Agichtein, E., & Grishman, R. (1998). Description of the MENE
Named Entity System as Used in MUC-7. Proceedings of the Seventh Message
Understanding Conference (MUC-7). Fairfax, Virginia: Morgan Kaufmann
Publishers, Inc.

Brill, E. (1995). Transformation-Based Error-Driven Learning and Natural Language
Processing: A Case Study in Part-of-Speech Tagging. Computational Linguistics,
21(4), 543-565.

Chinchor, N. (1995). Statistical Significance of MUC-6 Results. Proceedings of the Sixth
Message Understanding Conference (MUC-6) (pp. 39-43). Columbia, Maryland:
Morgan Kaufmann Publishers, Inc.

Chinchor, N. (1998). MUC-7 Named Entity Task Definition Dry Run Version, Version 3.5
17 September 1997. Proceedings of the Seventh Message Understanding Conference
(MUC-7) (to appear). Fairfax, Virginia: Morgan Kaufmann Publishers, Inc. URL:
ftp://online.muc.saic.com/NE/training/guidelines/NE.task.def.3.5.ps.

D. M. BIKEL, ET AL. 20 WHAT’S IN A NAME

Church, K. (1988). A Stochastic Parts Program and Noun Phrase Parser for Unrestricted
Text. Proceedings of the Second Conference on Applied Natural Language
Processing. Austin, Texas.

Krupka, G. (1995). SRA: Description of the SRA System as Used for MUC-6. Proceedings
of the Sixth Message Understanding Conference (MUC-6) (pp. 221-235). Columbia,
Maryland: Morgan Kaufmann Publishers, Inc.

Merchant, R., Okurowski, M., & Chinchor, N. (1996). The Multilingual Entity Task
Overview. Proceedings of the Tipster Text Program Phase II (pp. 445-447). Vienna,
Virginia: Morgan Kaufmann Publishers, Inc.

Rabiner, L. R. (1989). A Tutorial on Hidden Markov Models and Selected Applications in
Speech Recognition. Proceedings of the IEEE.

Sundheim, B., & Chinchor, N. (1995). Named Entity Task Definition (Version 2.1).
Proceedings of the Sixth Message Understanding Conference (MUC-6) (pp. 319-
332). Columbia, Maryland: Morgan Kauffman Publishers, Inc.

Viterbi, A. J. (1967). Error Bounds for Convolutional Codes and an Asympotically Optimum
Decoding Algorithm. IEEE Transactions on Information Theory, IT-13(2), 260-269.

Weischedel, R. (1995). BBN: Description of the PLUM System as Used for MUC-6.
Proceedings of the Sixth Message Understanding Conference (MUC-6) (pp. 55–69).
Columbia, Maryland: Morgan Kaufmann Publishers, Inc.

Weischedel, R., Meteer, M., Schwartz, R., Ramshaw, L., & Palmucci, J. (1993). Coping with
Ambiguity and Unknown Words through Probabilistic Methods. Computational
Linguistics, 19(2), 359-382.

